Continuous Energy Commissioning Program in Hospitality Sector

Justin Ng Galaxy Entertainment Group April 2018

Strictly Commercial-in-Confidence

- Continuous Energy Commissioning Program
- Key Factors in Continuous Energy Commissioning
 Program

Hospitality Sector

- 24 Hours operation.
- Upkeep the equipment and service standards all the time.
- Service maintenance and operation changed over the time.
- Staff turnover and new replacement need time to familiar with the operation.
- Equipment and fixtures high usage and changeover.
- Limited time for the repair and maintenance.

迎 門 銀 河

Most regular maintenance program is based on routine service.

Energy Profile not the same over the months or years.

There is a need for the change and adopt new operation with this dynamic profile.

For example: weather condition and occupancy

Macau Monthly Cooling Degree Day (CDD)

	Jan-14	Feb-14	Mar-14	Apr-14	May-14	Jun-14	Jul-14	Aug-14	Sep-14	Oct-14	Nov-14	Dec-14
CDD total	32	40	91	217	334	412	448	420	409	341	210	32
	Jan-15	Feb-15	Mar-15	Apr-15	May-15	Jun-15	Jul-15	Aug-15	Sep-15	Oct-15	Nov-15	Dec-15
CDD	37	54	120	219	362	421	423	432	386	327	249	71

2015 Total CDD = 2986 2016 Total CDD = 3101

Maximum temp was higher compare to past years.

Average temp increased about 3 Deg C. from 2010 to 2015.

Equipment and System Deterioration Issue

- End of product lifespan that led to efficiency drop.
 - For example:
 - Lighting level drop.
 - Air filter static pressure increased.
- Monitoring device change of accuracy.
 - For example:
 - Increased error of sensor reading.
 - Sensing element degradation.
 - No calibration.

Frequent of breakdown.

- For example:
- Variable Speed Drive breakdown and the AHU fan switched from variable to constant speed mode.
- Occupancy sensor malfunction led to the room lighting turned off all the time.

Continuous Energy Commissioning (CEC) Program

The continuous process of saving energy and improving building performance through optimization of building system and energy management system during the building operation stage.

- Correct the possible error and maintain the energy performance and efficiency to prevent further energy loss.
- Continuous monitoring of the conditions and performance to upkeep the standards.
- Identify, solve or avoid the failure of equipment in a short period of time.
- Improved facility and operations knowledge of facility operations personnel.
- Reduced maintenance costs and usually 10% to 15% annual cost avoidance.
- CEC process is more on labor intense to maintain the process and a low cost initiatives with short simple payback (usually less than 1 year)

CEC Process

Major Tasks in CEC: Performance Tracking Process

- 1. Monitor and Track
- Detect 2.
- 3. Diagnose
- 4. Optimize

4. Optimization 1. Monitor & and Fix Track **Problems** Performance

Performance Tracking Process

3. Diagnose **Problems and** Identify **Solutions**

2. Use Information to Detect Problems

Key Factors in CEC Program

2. No accurate performance data always leads to failure analysis and decision making.

<u>Four key factors in this stage</u> Measurement Uncertainty Condition of Equipment Schedule and Control Integration Issues and Performance

- Measurement Uncertainty is a quantitative indication of the quality and reliability of the measurement results.
- It is a key point in judging the fitness for purpose of a measurement result.
- There are always error and uncertainty exist in the measurement or sampling process.
 - For example, 10 Deg C +/- 1 Deg C.

Uncertainty Sources:

- **Calibration** ie. Manufacturers' specifications or field calibration
- Data Acquisition ie. Sensors, data logger, signal conditioning.
- Data Reduction ie. Processing raw data, computational round off errors, missing trend logs.
- Methods ie. Random sampling, averaging points, medium and material properties

Example of Chiller Plant Measurement

GALAXY" 澳門銀河 12

Example for the sensor and meter error

- Water Temperature Sensor
 Case 1 = +/- 0.5 Degree C error
 - Case 2 = +/- 1.0 Degree C error
- Power Meter = 1% error

P

• Flow Meter = 1% error

Case 1

Measurement Error Analysis		
Chilled Water Header Measurement		
Description	Measurement Error (% of reading)	
Temperature Sensor (Delta T)	3.85%	
Flow Sensor	1.00%	
Power Meter	1.00%	
Total Uncertainty	4.10%	
Uncertainty should be within 5% accord	rding to the ASHRAE Standard	
Temperature Measurement Error		
Description	Temperature in Deg. C.	Formulas
Sensor Accurancy@0 Deg. C.	0.5	CHWS Temperature
Sensor Accurancy@0 Deg. C.	0.5	CHWR Temperature
Design Delta T	6.50	
Measurement Error for Delta T	3 8462%	(CHWST x CHWRT)/Delta T
	J.0-TUZ/0	

Case 2

Measurement Error Analysis		
Chilled Water Measurement		
Description	Measurement Error (% of reading)	
Temperature Sensor (Delta T)	15.38%	
Flow Sensor	1.00%	
Power Meter	1.00%	
Total Uncertainty	15.45%	
Uncertainty should be within 5% accor	ding to the ASHARE Standard	
Temperature Measurement Error		
Description	Temperature in Deg. C.	Formulas
Sensor Accurancy@0 Deg. C.	1	CHWS Temperature
Sensor Accurancy@0 Deg. C.	1	CHWR Temperature
Design Delta T	6.50	
Measurement Error for Delta T	15.3846%	(CHWST x CHWRT)/Delta T

Case 1

- Total Measurement Error 4.10%
- 5,000 RT x (0.65 kW/RT) = 3,250 kW (perfectly no error)
- 5,000 RT x (0.65 kW/RT * (1 + 4.1%))
 = 3,383 kW
- 133 kW difference by 0.5 Degree error (+/- 4.10%)
- Convert back to Cooling Load (RT) = 205 RT

Case 2

- Total Measurement Error 15.45%
- 5,000 RT x (0.65 kW/RT) = 3,250 kW (perfectly no error)
- 5,000 RT x (0.65 kW/RT * (1+15.45%))
 = 3,752 kW
- 502 kW difference by 1.0 Degree error (+/- 15.45%)
- Convert back to Cooling Load (RT) = 772 RT

Potential Loss from Error 0.5 Deg C. to 1.0 Deg C. (502 kW – 133 kW) x 24 hours x 365 days x \$1.22 per kWh = \$3,954,382

50 cm

150 cm

Location for sensors can affect the measurement uncertainty level.

Install sensors at a height of 1.5 m in occupied spaces, and at least 50 cm from the adjacent wall.

The sensor must not be exposed to direct solar radiation.

Always use a thermally insulated backing when fitting to solid walls (steel, concrete etc).

Avoid external walls.

Avoid chimney walls.

17

Do not install directly adjacent to doors.

Do not install behind curtains.

Do not fit to walls concealing hot-water pipes.

Seal plastic and metal conduits, and cavity walls, to prevent draughts.

Do not expose to direct solar radiation.

Do not install on facades affected by

significant rising heat (e.g. metal), or facades which will be heated by solar radiation.

Avoid chimney walls.

Do not install under eaves.

Do not install above windows.

Do not install above ventilation shafts.

Seal plastic sleeves and metal conduits to prevent draughts.

Do not paint the sensor.

Ensure accessibility (for inspection / verification).

Source: Building Controls Group

When mixing water at different temperatures, always maintain an adequate distance between the mixing point and the sensor (to take account of stratification).

Indoor Air quality Sensors

Room mounted sensors

The location of the sensor should be representative of the indoor air quality, e.g. on an open wall 1.5 to 3 m above the floor

The sensor should not be mounted in niches or bookshelves.

.... not behind curtains,

.... or in locations where people are continuously present (within one or two meters such as speakers desks, working places, etc.

Source: Building Controls Group

Duct mounted sensors

Locate the sensors in the extract air duct as close as possible to the room air outlets.

The sensor should be installed in a vertical position.

Care should be taken to ensure the correct orientation of the duct probe with respect to the air flow.

The probe should not be installed in a vertical position with the head at the bottom.

- Importance of selecting a higher resolution for the BMS Controller or Data Logger from Analog to Digital Conversion (AC to DC resolution)
- For example, 12 bits ADC = 2^12 = 4,096 / 16 bits ADC = 2^16 = 65,536
- Resolution limits the precision of a measurement.
- Higher the resolution (number of bits), the more precise the measurement.

- Physical condition each equipment configuration and condition are different than others.
- Taking inspection and sampling with "typical unit or equipment" can lead to wrong data collection in the performance tracking and monitoring stage.
- Sensor technology supplier will not be guaranteed 100% measurement error free.
- As-built drawings is not always 100% matching system configuration on site.

MACAU

Software or System monitoring of equipment is limited with basic parameters.

Operating log sheet is documented with key parameters to tell the true performance of equipment.

For example, check the operating pressure, temperature and oil level for the chiller condition.

			漢度	<u>deg C</u>		-	
進行記録	Log 1 Log 2						
11年代2	_/2.828	运转承误	皮*	1	-		
PRV (22(%)	_100	前转水温	皮*	1	_		
丙烷電流(%)	88	冷凝器				Log 1	Log 2
二相造流(A)**	8221 833 1828 1 1		吸入温度			23.6	
(V)%(V)	30	5	体改适应			28.3	
(#rijkhich(hrs.)	12828	5	建定规			4.7	
起動失數		5	S.T.D(AT)			0.2	
民雄棘派上次打迫時間	23.11.2014						
Dom'	I was here		贬人慰力				
雄议整力	_624-KPQ	5	体放照力			190 -	
相处活动		,	65.7293			80	
排放理能然活成		72 M 20(8	K (97-29)			11 /	
吸入壓力	2011-00		投入 循度				
设入国温度	4.7		外农场权				
收入理由枯诺度			14.8				
200222		1	S.T.D(AT)			-0.8 -	_
21/296/03/2	$() (\downarrow) () (\downarrow)$					1740	
encor M 1	7/10		R.A.M.J.			1290 -	
80.73 (8-97	42.6		90 20.48.73				
対比	<u> </u>	28	6.77%				
	T	,	电分器流量(L/S)			147	
	U U	2	冷凝器流量(L/S)			202	_
月尔教教育項目列表		11/2		,		11 11 12 13 14 18 14	
<u>私祝</u>	韓立系統和主体32(第29章)		1.46	- 2	÷.	NERTHER WORKS	
	戴信语音水平		1.4	1	2	个 <i>出来</i> 9	64
	检查输送密时性状况	(~)	5.8		,	不)):第4	rops/min
	检查PRV通应协定	(~)	定署	()	見倚注或50	
	検查可疑如次孔道作纳式	(~)	8.1	()	兒間註地\$0	
	檢查控制到板運作狀況	(~)	12	()	兒間註來\$0	
经收出	偏亚地发进作状况	(1)	32.8	()	見機証成SO	
	检查运输及超力	(~)	108	()	后至之间统计统定法	
	的专动演员各部的	(1)	208	()	点等が実際にわれる	
	NETOP	(1)	68	()	010000000000000000000000000000000000000	101
	AN AUGUST IN THE	11	68	1)	100000000000000000000000000000000000000	100
	and the second sec						

"External Factors" to affect the performance of equipment.

Current Condition of Equipment

- Operating schedule is the key of the energy consumption by equipment (kW x Running Hours = kWh).
- Scheduling problem is quite common issue found in the CEC process.
- Smart scheduling can save money by allowing reduction of energy output during the demand time in the operation.

Modeling equipment schedule techniques in CEC process

- Task Model each task has its priority and task profile for the power consumption. It can be defined into different classes.
- **Backtracking-Based Scheduling** identify the complexity and potential issues that may incur the additional energy usage in the operational schedule.

Task Model

- Class 1 task start immediately after the task gets ready and cannot be ceased to the end. (F&B Outlet A/C to start before the guest comes to the outlet)
- Class 2 task don't have to start as soon as they get ready but their operations are not preemptive (dish washer or laundry machine can start anytime as long as the task can be completed within a specific time)
- Class 3 task can also start after their activation time as class 2 task but they are preemptive (Electric charging)

Backtracking-Based Scheduling

- Tracking the control sequence to match the schedule
- Potential unexpected activities (Example: occasional dinner functions or business events)
- End user behavior (different customers or occupancy in peak or non-peak session)

Power Reduction by an Optimal Schedule

Equipment Performance and Efficiency depending on how well the control of equipment

Common Problems as below

- 1. VSDs that do not modulate
- 2. Faulty Control Valves
- 3. Unimplemented reset schedules
- 4. Controls out of calibration
- 5. Static pressure higher than required
- 6. Night setbacks not implemented

- 7. Equipment operating more than necessary or inefficiently
- 8. ECM never programmed
- 9. Improper sequences of operation/simultaneous heating and cooling
- 10. Improper outside air damper settings and controls

Key review of the extended functional testing in CEC:

- **Unacceptable cycle length during the change of weather condition.** Setpoint temperature is fixed but the ambient outside conditions are changing (Low/strong wind, heavy rain or low cloud base level).
- **Cool-Down or Warm-Up process.** The space condition is not brought up to temperature by the time of occupancy, resulting in occupant discomfort. To solve this problem, scheduled operation is often changed to start much earlier. If the earlier start persists in the long term, energy is wasted.
- **Rapid equipment cycling.** Rapid cycling of equipment creates the demand spike that can overcome in utility charges to exceed the costs associated with staging the start up of the systems over a longer timer interval such as electrical heaters, walk-in cold room compressor.

Conserve Energy is important to maintain the operational cost optimized but occupant comfort, health and safety activities always came in "First Priority". Optimize Energy and occupant comfort must review together.

Implementing Energy Conservation Measures is not just simply saving the energy. There are always an impact to other building performance.

Optimizing the **Total Building Performance** is the ultimate goal.

- **Total Building Performance** Set of coordinated strategies aimed at assessing the quality performance of a building in Air Quality, Thermal Comfort, Visual Comfort, Acoustical, Structural, Spatial and Building Integrity.
- Continuous Energy Commissioning is not just looking at the energy performance but also looking into other building performance.
- Minimize the energy usage and maximize different building performance by using integrated optimization and smart responses.
- Balance the Building Performances so it will not complicate other performances.

	PHYSIOLOGY	PSYCHOLOGY	SOCIOLOGY	ECONOMY
Spatial	Ergonomic Handicapped access Functional services	Habitability Aesthetics quality External view	Way-finding Provision of common space Ease of interaction	Space conservation Function optimization Health & injury costs
Thermal	No cold hand/ feet No drowsiness No heat stroke	Perceivable comfort Moderately cool Ability to control	Flexibility to adjust attires Commonality of thermal preference	Energy conservation Performance benefits
Indoor Air Quality	Fresh air intakes No respiratory illness No skin rashes	Perceivable freshness No foul smell Presence of nature (plants, flowers)	Behavior leading to untolerable air ETS	Energy conservation Health-related costs
Visual	No glare Proper illumination Clear way-finding	Color-emotion effect Spaciousness Liveliness	Territorial sense Well-lit common space	Energy conservation Performance benefits
Acoustic	No intolerable noise Speech/ music quality No hearing damage	Quietness, soothing Active, excite Liveliness	Ease of communication SRS performance for meeting areas	Performance benefits
Building Integrity	Fire safety Weather-tightness Structural strength & stability	Personal image Sense of safety Maintainability	Organization status Demonstration of quality	Material conservation Maintenance costs

ALAXI" MACAU 澳門銀河

Sample Performance Failures* From Visual Perfo	ormance Decisions				
Decisions made for:	Leading to failures in:				
Visual Performance	Thermal Performance				
increased floor-to-ceiling height	increased thermal stratification and conditioning needs				
reflective glass to reduce glare	reduced potential for solar heating during underheated periods				
increased use of glass for daylighting	excessive gains during overheated periods				
increased number of light fixtures	excessive heat gain from lights, especially with poor lumens/watt				
Visual Performance	Acoustical Performance				
fluorescent lighting	buzzing, depending on quality, maintenance and age				
sea of evenly spaced fixtures for flexibility	increased potential for sound reflection				
venetian blinds for light control instead of fabric curtains	increased sound reflectivity				
Visual Performance	Spatial Performance				
ambient lighting only in circulation areas	loss of full spatial flexibility				
open plan offices to maximize daylight penetration and artificial light distribution	loss of privacy and hierarchy				
central light management systems	loss of individual control, poor energy performance				
undifferentiated task-ambient lighting	loss of wayfinding, workplace definition				
Visual Performance	Air Quality				
artificial lighting alone for control and efficiency	without sunlight, potential psychological dissatisfaction; dying plants; germ and mold build-up				
use of fluorescent light fixtures	poor spectral distribution; possible radiant and particulate polluti				
Visual Performance	Building Integrity				
reflective film retrofit to reduce glare	fissure cracks, visual degradation				
poor selection of light diffusers/lenses on fixtures	dust buildup, yellowing, increased maintenance				
highly reflective, light-colored furnishings for light distribution	marring, discoloring, staining; high maintenance				
daylighting	fading, discoloring, brittleness, cracking				

*Examples drawn from five years of occupied office building evaluations in U.S., Canada, and England,

THE END

